Abstract

In the coculture system of periostless metatarsal bones of 17-day-old fetal mice and osteoclast progenitors, osteoclasts will develop. Our goal in the present report was to provide further evidence that in the coculture system of fetal metatarsal bone rudiments with hemopoietic cells, the osteoclasts developing inside the bone rudiments are exclusively derived from the cells suspended in the plasma clot and not from endogenous precursor cells of the bone explants themselves, by using the technique of in situ hybridization with a probe for the mouse Y chromosome. Osteoclast formation in unstripped male metatarsal rudiments, occurring after 3-4 days of culture, was compared with osteoclast formation in cocultures of female metatarsal rudiments and male bone marrow cells, occurring after 5-6 days of culture. Osteoclasts were recognized by their tartrate-resistant acid phosphatase activity. In paraffin sections of cultured male metatarsals, the mean percentage of microscopically identifiable osteoclast nuclei, in which the Y chromosome could be detected, was 43.1 +/- 4.2% (n = 12). For cocultures of female metatarsal bones and male bone marrow cells this mean percentage was 40.9 +/- 5.7% (n = 17). Statistical comparison by means of the two sample t-test indicated no significant difference in the percentages of osteoclast nuclei containing the Y chromosome for both groups. We concluded that the osteoclasts do derive from cocultured cells and not from precursor cells in the bone explant itself.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.