Abstract

Osteoarthritis (OA) is a common aging-related disease affecting entire joint structures, encompassing articular cartilage and subchondral bone. Although senescence and dysfunction of chondrocytes are considered crucial factors in the occurrence of OA, the exact pathogenesis remains to be investigated. In our study, chondrocytes were incubated with a conditioned medium obtained from osteoclasts at different differentiation stages, suggesting that osteoclasts and osteoclast precursors suppressed anabolism and promoted the catabolism of chondrocytes in vitro. In contrast, the function of osteoclasts was more significant than osteoclast precursors. Further blocking of osteoclast exosome secretion by using GW4869 abolished the effect of osteoclasts on chondrocytes. Functionally, exosomal transfer of osteoclast-derived miR-212-3p inhibited Smad2 to mediate chondrocyte dysfunction, thus accelerating cartilage matrix degradation in OA via TGF-β1/Smad2 signaling. The mechanism was also confirmed within the articular cartilage in OA patients and surgery-induced OA mice. Our study provides new information on intercellular interactions in the bone microenvironment within articular cartilage and subchondral bone during OA progression. The miR-212-3p/Smad2 axis is a potential target for the prevention and therapy of OA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.