Abstract

Application of extracellular adenosine triphosphate (ATP) induces a pulsed decrease in osteoclast intracellular pH (pHi), as measured with seminaphthofluorescein (SNAFL)-calcein on a laser scanning confocal microscope. Adenosine diphosphate also produces a pHi decrease, but adenosine monophosphate, uridine triphosphate, 2-methylthio-ATP, and beta, gamma-methylene-ATP have little effect on pHi. The ATP-induced pHi decrease is largely inhibited by suramin, a P2 purinergic receptor blocker. Clamping intracellular free [Ca2+] ([Ca2+]i) with BAPTA/AM does not affect the ATP-induced pHi change, showing that this pHi decrease is not caused by the increased intracellular [Ca2+]i that is produced by activation of osteoclast purinergic receptors. We show that an increase in [Ca2+]i by itself will produce a pHi increase. The ATP effect is not blocked by inhibition of Na+/H+ exchange by either Na(+)-free bathing medium or amiloride. Two inhibitors of the osteoclast cell membrane proton pump, N-ethylmaleimide and vanadate, produce partial inhibition of the ATP-induced pHi decrease. Two other proton pump inhibitors, bafilomycin and N,N'-dicyclohexylcarbodiimide, have no influence on the ATP effect. None of the proton pump inhibitors but vanadate has a direct effect on pHi. Vanadate produces a transient pHi increase upon application to the bathing medium, possibly as a result of its known effect of stimulating the Na+/H+ exchanger. Inhibition of Cl-/HCO3- exchange by decreasing extracellular Cl- gives a pronounced long-term pHi increase, supporting the hypothesis that this exchange has an important role in osteoclast pHi homeostasis. In Cl(-)-free extracellular medium, there is a greatly reduced effect of extracellular ATP on pHi.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call