Abstract

The existing in vitro and in vivo models for studying osteoarthritis have significant limitations in replicating the complexity of joint tissues. This research aims to validate a Tissue-On-a-Chip system for osteoarthritis research. Osteochondral tissues obtained from knee replacement surgeries of patients with osteoarthritis were cultured in an Organ-On-a-Chip system. This system was designed to supply oxygen and glucose to the cartilage from the bone. The distribution of oxygen and glucose was evaluated by fluorescence using Image-iT Green Hypoxia and 2-NBDG, respectively. Cytotoxicity was measured using lactate dehydrogenase (LDH) levels in chip cultures compared to plate cultures (12 tissues per method). Glycosaminoglycans (GAGs), alkaline phosphatase (ALP), Coll2-1, and procollagen type II N-terminal propeptide (PIINP) were measured in the perfused medium of the Tissue-On-a-Chip over a period of 70 days. Fluorescence of Image-iT Green Hypoxia was observed only in the cartilage area, while 2-NBDG was distributed throughout the tissue. An increase in LDH levels was noted in the plate cultures on day 24 and in the Tissue-On-a-Chip cultures on day 63. Compared to the start of the culture, GAG content increased on day 52, while ALP showed variations. A notable increase in GAG, ALP, and Coll2-1 levels was observed on day 59. PIINP levels remained stable throughout the experiment. The validated osteochondral Tissue-On-a-Chip system can replicate the joint microenvironment, with hypoxic conditions in cartilage and normoxic conditions in bone. Tissue survival and component stability were maintained for approximately two months. This platform is a useful tool for evaluating new drugs and represents a viable alternative to animal models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.