Abstract

The objective of this study was to assess a novel 3D microstructured scaffold seeded with allogeneic chondrocytes (cells) in a rabbit osteochondral defect model. Direct laser writing lithography in pre-polymers was employed to fabricate custom silicon-zirconium containing hybrid organic-inorganic (HOI) polymer SZ2080 scaffolds of a predefined morphology. Hexagon-pored HOI scaffolds were seeded with chondrocytes (cells), and tissue-engineered cartilage biocompatibility, potency, efficacy, and shelf-life in vitro was assessed by morphological, ELISA (enzyme-linked immunosorbent assay) and PCR (polymerase chain reaction) analysis. Osteochondral defect was created in the weight-bearing area of medial femoral condyle for in vivo study. Polymerized fibrin was added to every defect of 5 experimental groups. Cartilage repair was analyzed after 6 months using macroscopical (Oswestry Arthroscopy Score [OAS]), histological, and electromechanical quantitative potential (QP) scores. Collagen scaffold (CS) was used as a positive comparator for in vitro and in vivo studies. Type II collagen gene upregulation and protein secretion was maintained up to 8 days in seeded HOI. In vivo analysis revealed improvement in all scaffold treatment groups. For the first time, electromechanical properties of a cellular-based scaffold were analyzed in a preclinical study. Cell addition did not enhance OAS but improved histological and QP scores in HOI groups. HOI material is biocompatible for up to 8 days in vitro and is supportive of cartilage formation at 6 months in vivo. Electromechanical measurement offers a reliable quality assessment of repaired cartilage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call