Abstract

Hypothesizing that the implantation of non-articular (heterotopic) chondrocytes might be an alternative approach to support articular cartilage repair, we analyzed joint cartilage defect healing in the rabbit model after implantation of autologous auricle-derived (auricular) chondrocytes. Autologous lapine articular and auricular chondrocytes were cultured for 3 weeks in polyglycolic acid (PGA) scaffolds before being implanted into critical sized osteochondral defects of the rabbit knee femoropatellar groove. Cell-free PGA scaffolds and empty defects served as controls. Construct quality was determined before implantation and defect healing was monitored after 6 and 12 weeks using vitality assays, macroscopical and histological score systems. Neo-cartilage was formed in the PGA constructs seeded with both articular and auricular chondrocytes in vitro and in vivo. At the histological level, cartilage repair was slightly improved when using autologous articular chondrocyte seeded constructs compared to empty defects and was significantly superior compared to defects treated with auricular chondrocytes 6 weeks after implantation. Although only the immunohistological differences were significant, auricular chondrocyte implantation induced an inferior healing response compared with the empty defects. Elastic auricular chondrocytes might maintain some tissue-specific characteristics when implanted into joint cartilage defects which limit its repair capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.