Abstract

The maintenance of our physiological functions and their adaptive response to environmental changes depend on precise crosstalk between organs. Recent advances in mouse genetics have helped demonstrate that this holistic view of physiology extends to the skeletal system, where many unexpected signaling axes are found to play essential roles affecting numerous organs. After being long regarded as a static tissue, functioning merely as a structural support system, the skeleton has seen its image evolve into a much more complex picture. The skeleton reveals itself as a key endocrine organ for the homeostasis of our body, both by its central position in our body, but also by the large number of physiological functions it influences. In this review, we discuss the multiple endocrine roles of osteocalcin, an osteoclast-derived molecule (Ocn), where its functional importance has steadily increased over the last 15 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call