Abstract

The aims of this study were to deposit a zinc-hydroxyapatite (Zn-HA) coating on titanium surfaces by using the electrochemical process and investigate the cell response to the Zn-HA-coated titanium surface. Surface characteristics were evaluated by scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Murine preosteoblast cell (MC3T3-E1) proliferation, alkaline phosphatase (ALP) activity, and osteocalcin release on Zn-HA-coated surfaces were compared with HA-coated surfaces. Field-emission SEM observation showed rod-like HA crystals with a hexagonal cross-section on the HA-coated surface, although the hexagon of the cross-section of Zn-HA crystals became irregular. ICP-AES analysis showed that Zn was present in the Zn-HA coatings at a Zn/(Ca+Zn) molar ratio of 1.04%. Significant increases in cell proliferation, ALP activity on day 7, and osteocalcin production on day 14 (P < .05) were observed for Zn(2+)-containing HA-coated surfaces. The present study showed that a Zn-HA coating deposited by using the electrochemical process enhances proliferation and differentiation of osteoblasts, which has the potential benefit to enhance implant osseointegration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.