Abstract
Many studies have been exploring the use of bone graft materials (BGMs) and mesenchymal stem cells in bone defect reconstruction. However, the regeneration potential of Algipore (highly purified hydroxyapatite) and Biphasic (hydroxyapatite/beta-tricalcium phosphate) BGMs combined with bone marrow-derived mesenchymal stem cells (BMSCs) remains unclear. Therefore, we evaluated their osseointegration capacities in reconstructing peri-implant bone defects. The cellular characteristics of BMSCs and the material properties of Algipore and Biphasic were assessed in vitro. Four experimental groups-Algipore, Biphasic, Algipore+BMSCs, and Biphasic+BMSCs-were designed in a rabbit tibia peri-implant defect model. Implant stability parameters were measured. After 4 and 8 weeks of healing, all samples were evaluated using micro-CT, histological, and histomorphometric analysis. In the energy-dispersive X-ray spectroscopy experiment, the Ca/P ratio was higher for Algipore (1.67) than for Biphasic (1.44). The ISQ values continuously increased, and the PTV values gradually decreased for all groups during the healing period. Both Algipore and Biphasic BGM promoted new bone regeneration. Higher implant stability and bone volume density were observed when Algipore and Biphasic BGMs were combined with BMSCs. Biphasic BGM exhibited a faster degradation rate than Algipore BGM. Notably, after eight weeks of healing, Algipore with BSMCs showed more bone-implant contact than Biphasic alone (p < 0.05). Both Algipore and Biphasic are efficient in reconstructing peri-implant bone defects. In addition, Algipore BGM incorporation with BSMCs displayed the best performance in enhancing implant stability and osseointegration potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.