Abstract

Porous structure properties are known to conduct initial and long-term stability of titanium alloy implants. This study aims to assess the histomorphometric effect of a 3-D porosity in Ti-6Al-4V implants (PI) on osseointegration in comparison to solid Ti-6Al-4V implants (SI). The PI was produced in a spaceholder method and sintering and has a pore size of mean 400 µm (50 µm to 500 µm) and mimics human trabecular bone. Pairs of PI and equal sized SI as reference were bilaterally implanted at random in the lateral femoral condyle of 16 Chinchilla-Bastard rabbits. The animals were sacrificed after 4 and 12 weeks for histomorphometric analysis. The histomorphometric evaluation confirmed a successful short-term osseohealing (4 weeks) and mid-term osseoremodeling (12 weeks) for both types of implants. The total newly formed bone area was larger for PI than for SI after 4 and 12 weeks, with the intraporous bone area being accountable for the significant difference (p<0.05). A more detailed observation of bone area distribution revealed a bony accumulation in a radius of +/- 500 µm around the implant surface after remodeling. The bone-to-implant contact (BIC) increased significantly (p<0.05) from 4 to 12 weeks (PI 26.23 % to 42.68 %; SI 28.44 % to 47.47 %) for both types of implants. Due to different surface properties, however, PI had a significant (p<0.05) larger absolute osseous contact (mm) to the implant circumference compared to the SI (4 weeks: 7.46 mm vs 5.72 mm; 12 weeks: 11.57 mm vs 9.52 mm [PI vs. SI]). The regional influences (trabecular vs. cortical) on bone formation and the intraporous distribution were also presented. Conclusively, the porous structure and surface properties of PI enable a successful and regular osseointegration and enhance the bony fixation compared to solid implants under experimental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.