Abstract

Arbuscular mycorrhiza (AM) is a mutualistic symbiosis formed between most land plants and Glomeromycotina fungi. During symbiosis, plants provide organic carbon to fungi in exchange for mineral nutrients. Previous legume studies showed that the required for arbuscular mycorrhization2 (RAM2) gene is necessary for transferring lipids from plants to AM fungi (AMF) and is also likely to play a "signaling" role at the root surface. To further explore RAM2 functions in other plant lineages, in this study, two rice (Oryza sativa) genes, OsRAM2 and OsRAM2L, were identified as orthologs of legume RAM2. Examining their expression patterns during symbiosis revealed that only OsRAM2 was strongly upregulated upon AMF inoculation. CRISPR/Cas9 mutagenesis was then performed to obtain three Osram2 mutant lines (-1, -2, and -3). After inoculation by AMF Rhizophagus irregularis or Funneliformis mosseae, all of the mutant lines showed extremely low colonization rates and the rarely observed arbuscules were all defective, thus supporting a conserved "nutritional" role of RAM2 between monocot and dicot lineages. As for the signaling role, although the hyphopodia numbers formed by both AMF on Osram2 mutants were indeed reduced, their morphology showed no abnormality, with fungal hyphae invading roots successfully. Promoter activities further indicated that OsRAM2 was not expressed in epidermal cells below hyphopodia or outer cortical cells enclosing fungal hyphae but instead expressed exclusively in cortical cells containing arbuscules. Therefore, this suggested an indirect role of RAM2 rather than a direct involvement in determining the symbiosis signals at the root surface.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.