Abstract

No detailed studies have been performed to date on osmotolerance in cryptophytes, although one species, Chroomonas africana, had previously been reported to grow in freshwater as well as seawater. This study focused on osmotolerance in Chroomonas. Growth at different osmolalities and parameters of contractile vacuole function were examined and compared across a high-resolution phylogeny. Two evolutionary lineages in the Chroomonas clade proved to be euryhaline. Ranges of osmotolerance depended not only on osmolality, but also on culture medium. All cryptophytes contained contractile vacuoles. In the euryhaline strain CCAP 978/08 contractile vacuoles could be observed even at an osmolality beyond that of seawater. In addition the cells accumulated floridoside, an osmoprotectant likely originating from the red algal carbohydrate metabolism of the complex rhodoplast. Further evidence for functional contractile vacuoles also in marine cryptophytes was provided by identification of contractile vacuole-specific genes in the genome of Guillardia theta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call