Abstract

Microbial electrosynthesis (MES), is an emerging technology, for sustainable wastewater treatment. The dilute acetate solution, produced via MES, must be recovered, as dilute solutions can be expensive to store and transport. The acetate is expensive and environmentally damaging to recover by heat-intensive evaporative methods, such as distillation. In pursuit of a better energy economy, a membrane separation system is simulated to raise the concentration from 1 to 30 wt%, at a hydraulic pressure of approximately 50 bar. The concentrate is then simulated to be heat dried. Reverse osmosis (RO) could rase the acetate concentration to 8 wt%. A novel adaptation of osmotically assisted reverse osmosis (OARO) is then simulated to increase the concentration from 8 to 30 wt%. The inclusion of OARO, rather than a standalone RO unit, reduces the total heat and electric power requirement by a factor of 4.3. It adds to the membrane area requirement by a factor of 6. The OARO simulations are conducted by the internal concentration polarisation (ICP) model. Before the model is used, it is fitted to OARO experimental data, obtained from the literature. Membrane structure number of 701 µm and permeability coefficient of 2.51 L/m2/h/bar are ascertained from this model fitting exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.