Abstract

Osmotic stress causes water molecules to efflux from cells through the cytoplasmic membrane. This study reveals that targeted mutation of the aqpZ gene, encoding an aquaporin water channel protein, in the cyanobacterium Synechocystis sp. PCC 6803 prevents the osmotic shrinkage of cells, suggesting that it is the water channel rather than the lipid bilayer that is primarily responsible for water transition through the membrane of this organism. The observations suggest that the aquaporin-mediated shrinkage of the Synechocystis cells plays an important role in changes of gene expression in response to hyperosmotic stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.