Abstract

Transcriptional activation of the thiostrepton-inducible promoter, ptipA, in Streptomyces lividans is mediated by TipAL. This transcriptional activator belongs to the MerR/SoxR family that characteristically binds an operator sequence located between the -10 and -35 hexamers normally occupied by RNA polymerase. As for the Escherichia coli merT promoter, the ptipA hexamers are separated by a long 19 bp spacer and hence a topological transition of the DNA is likely to be a requisite for alignment with RNA polymerase. Growth conditions that could facilitate this conformational change were investigated using transcriptional fusions of ptipA with reporter genes. Adjustment of growth medium osmolarity led to increased and prolonged TipAL-dependent expression, both with and without the inducer, thiostrepton. These effects correlated with increases in negative DNA supercoiling. Moreover, an inability to induce the promoter with thiostrepton in strain TK64 was corrected by increasing the concentration of osmolyte, compensating for an apparent reduced level of negative DNA supercoiling in the strain. Prolonging the time of activation of tipA in the wild-type by manipulating growth conditions revealed that mycelial autolysis could be induced by thiostrepton in 4-d-old cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.