Abstract
Cells in the kidney inner medulla are routinely exposed to high extracellular osmolarity during normal operation of the urinary concentrating mechanism. One adaptation critical for survival in this environment is the intracellular accumulation of organic osmolytes to balance the osmotic stress. Betaine is an important osmolyte that is accumulated via the betaine/gamma-aminobutyric acid transporter (BGT1) in the basolateral plasma membrane of medullary epithelial cells. In response to hypertonic stress, there is transcriptional activation of the BGT1 gene, followed by trafficking and membrane insertion of BGT1 protein. Transcriptional activation, triggered by changes in ionic strength and water content, is an early response that is a key regulatory step and has been studied in detail. Recent studies suggest there are additional post-transcriptional regulatory steps in the pathway leading to upregulation of BGT1 transport, and that additional proteins are required for membrane insertion. Reversal of this adaptive process, upon removal of hypertonic stress, involves a rapid efflux of betaine through specific release pathways, a reduction in betaine influx, and a slower downregulation of BGT1 protein abundance. There is much more to be learned about many of these steps in BGT1 regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.