Abstract

Codium decorticatum regulates its internal ionic composition and osmotic pressure in response to changes in external salinity. Over a salinity range of 23 to 37% (675 to 1120 mosmol/kg) Codium maintains a constant turgor pressure of 95 mosmol/kg (2.3 atm), observed as a constant difference between internal and external osmotic pressures. The changes in internal osmotic pressure are due to changes in intracellular inorganic ions. At 30 0/00 salinity the major intracellular ions are present in the following concentrations (mmol/kg cell H20): K+, 295; Na+, 255; Cl-, 450. At different salinities intracellular ion concentrations remain in constant proportion to the external ion concentrations, and thus the equilibrium potentials are approximately constant. The potential difference between the vacuole and seawater (-76 mV), whici is predominantly a K+ diffusion potential, is also constant with changing salinity. Comparison of the equilibrium potentials with the vacuole potential suggests that Cl- is actively absorbed and Na+ actively extruded, whereas K+ may be passively distributed between the vacuole and seawater. Turgor pressure does not change with environmental hydrostatic pressure, and increasing the external osmotic pressure with raffinose elicits a response similar to that obtained by increasing the salinity. These two results suggest that the stimulus for turgor regulation is a change in turgor pressure rather than a change in internal hydrostatic pressure or ion concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call