Abstract

Laponite is a synthetic clay that is known to form gels in aqueous suspensions at low concentrations (0.01 g/cm3). Although it is expected to form lyotropic liquid crystals, such phases usually do not form, as a consequence of laponite's tendency to form gels at concentrations below the threshold for liquid crystal formation. Here we show that macroscopic, birefringent phases of laponite can be prepared through osmotic compression of a laponite solution by an aqueous solution of carboxy methyl cellulose (CMC). We present polarization imaging studies showing how the initially dilute, isotropic laponite phase shrinks while developing typical birefringence colors between crossed polarizers. Using the Michel-Lévy interference charts, we were able to extract the refractive index and orientation of the laponite nanodisks in the compressed region. Our observations allow us to propose a tentative state diagram, indicating the concentration regions for which we obtain optically anisotropic gels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.