Abstract

We consider the lattice Domb-Joyce model at a value of the coupling for which scaling corrections approximately vanish and determine the universal scaling functions associated with the osmotic pressure and the polymer size for semidilute polymer solutions (c/c( *)<or=10, where c is the concentration of the solution and c( *) is the overlap concentration) in good-solvent conditions. Our result for the osmotic pressure agrees with previous renormalization-group calculations (the relative difference is less than 1%) but differs significantly from previous numerical determinations in which polymers were modeled as lattice self-avoiding walks. We show that for c/c( *) greater than or approximately equal 6 simulations of lattice self-avoiding walks give results that are affected by strong scaling corrections even for chain lengths as large as 1000: The self-avoiding walk model is therefore unsuitable for the determination of universal properties of polymer solutions deep in the semidilute regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call