Abstract

Current state-of-the art technologies are lagging in the application of desiccation storage to mammalian cells using nonreducing sugars. For bovine sperm, motility is irreversibly lost before reaching a sufficiently low moisture content necessary for preservation. It is hypothesized that much of the damage during drying is related to the osmotic stress encountered due to increased osmolarity of the extracellular environment. To test this hypothesis, we subjected sperm to liquid hyperosmotic environments for varying time-periods and measured their motility. We then extracted parameters for two models for motility loss based on these experiments: a first-order rate injury model (Fast or Slow) and a multi-modal (MM) injury model. The MM injury model incorporated an additional function accounting for damage induced by a time-independent osmotic change. Based on these models, we predicted sperm motility loss measured from natural and forced convective desiccation experiments. The MM injury model was able to closely bracket motility loss for desiccation as an osmotic change event with time-independent and time-dependent components. While the mechanistic basis of osmotic damage requires further exploration, the model can serve as a bracketing tool for predicting motility loss during desiccation based on excipients designed to minimize osmotic damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call