Abstract

Osmosonication combines ultrasound with nonthermal concentration. It was applied on tropical highland blackberry (Rubus adenotrichus) juice over different periods of time to assess reductions in microorganism and the impact on main quality parameters. This juice had been inoculated with Salmonella spp., Shigella sp., a lactic acid bacterium, yeasts, and molds. It was then sonicated for 5.9 to 34.1 min at 20 kHz and 0.83 W/mL. Nonthermal concentration was simulated by mixing the juice with a concentrate to obtain 650 g TSS/kg. It was then stored at -18 °C for up to 82 h. The lactic acid bacterium, yeasts, and molds were reduced by 1.60 to as much as 5.01 log(10) CFU/mL, whereas, for pathogens, reductions were total ≥7.1 log(10) CFU/mL after 24 h of storage, even for juice not sonicated, because of low pH. Color, antioxidant capacity, anthocyanins, and ellagitannins did not change significantly during sonication treatment up to 32 min. However, an off-flavor was detected after 8 min of sonication. Nonetheless, osmosonication can be considered as an alternative to thermal processes for producing safe and high-quality concentrates. Osmosonication represents a potential processing alternative for producing safe and high-quality concentrated fruit juice without applying thermal treatments. Findings reported in this article can also be applied by industries when concentrating juices by classical means at relatively low temperature. It provides industries with a mathematical model specific for blackberry juice, from which different combinations of sonication time and storage time of concentrate can be chosen to achieve safety and quality goals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.