Abstract

Effects of water-deficient stress and cotyledon excision on osmoregulation in hypocotyls of dark-grown mung bean seedlings were studied, and following results were obtained. Water-deficient stress inhibited hypocotyl elongation either in intact or decotylized seedlings. The inhibition was more conspicuous in decotylized seedlings than in intact ones. Water-deficient stress decreased osmotic potential in hypocotyls, while cotyledon excision increased it. The concentrations of soluble sugars, free amino acids and potassium ions in hypocotyls of intact or decotylized seedlings increased in response to water-deficient stress. Cotyledon excision reduced the concentration of soluble sugars and free amino acids, but it did not change the concentration of potassium ions, suggesting that a part of soluble sugars and free amino acids is transported from cotyledons. Unlike cotyledon excision, excision of the apex or roots had no influence on osmoregulation in response to water-deficient stress. Segments excised from hypocotyls had the ability to osmoregulate in response to water-deficient stress. Based on these results, the role of cotyledons in osmoregulation in response to water-deficient stress and quantitative relationships between osmotic potential and hypocotyl elongation in etiolated mung bean seedlings are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call