Abstract

We report the initial characterization of the osmoregulated periplasmic glucans (OPGs) of Erwinia chrysanthemi. OPGs are intrinsic components of the bacterial envelope necessary to the pathogenicity of this phytopathogenic enterobacterium (F. Page, S. Altabe, N. Hugouvieux-Cotte-Pattat, J.-M. Lacroix, J. Robert-Baudouy and J.-P. Bohin, J. Bacteriol. 183:0000-0000, 2001 [companion in this issue]). OPGs were isolated by trichloracetic acid treatment and gel permeation chromatography. The synthesis of these compounds appeared to be osmoregulated, since lower amounts of OPGs were produced when bacteria were grown in media of higher osmolarities. However, a large fraction of these OPGs were recovered in the culture medium. Then, these compounds were characterized by compositional analysis, high-performance anion-exchange chromatography, matrix-assisted laser desorption mass spectrometry, and (1)H and (13)C nuclear magnetic resonance analyses. OPGs produced by E. chrysanthemi are very heterogeneous at the level of both backbone structure and substitution of these structures. The degree of polymerization of the glucose units ranges from 5 to 12. The structures are branched, with a linear backbone consisting of beta-1,2-linked glucose units to which a variable number of branches, composed of one glucose residue, are attached by beta-1,6 linkages in a random way. This glucan backbone may be substituted by O-acetyl and O-succinyl ester-linked residues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call