Abstract

In common with other zwitterionic quarternary ammonium compounds (QACs), glycine betaine acts as an osmoprotectant in plants, bacteria, and animals, with its accumulation in the cytoplasm reducing adverse effects of salinity and drought. For this reason, the glycine betaine biosynthesis pathway has become a target for genetic engineering of stress tolerance in crop plants. Besides glycine betaine, several other QAC osmoprotectants have been reported to accumulate among flowering plants, although little is known about their distribution, evolution, or adaptive value. We show here that various taxa of the highly stress-tolerant family Plumbaginaceae have evolved four QACs, which supplement or replace glycine betaine-namely, choline O-sulfate and the betaines of beta-alanine, proline, and hydroxyproline. Evidence from bacterial bioassays demonstrates that these QACs function no better than glycine betaine as osmoprotectants. However, the distribution of QACs among diverse members of the Plumbaginaceae adapted to different types of habitat indicates that different QACs could have selective advantages in particular stress environments. Specifically, choline O-sulfate can function in sulfate detoxification as well as in osmoprotection, beta-alanine betaine may be superior to glycine betaine in hypoxic saline conditions, and proline-derived betaines may be beneficial in chronically dry environments. We conclude that the evolution of osmoprotectant diversity within the Plumbaginaceae suggests additional possibilities to explore in the metabolic engineering of stress tolerance in crops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.