Abstract
The stability of proteins is reduced by urea, which is methylamine and nonprotecting osmolyte; eventually urea destabilizes the activity and function and alters the structure of proteins, whereas the stability of proteins is raised by the osmolytes, which are not interfering with the functional activity of proteins. The deleterious effect of urea on proteins has been counteracted by methylamines (osmolytes), such as trimethylamine N-oxide (TMAO), betaine, and sarcosine. To distinctly enunciate the comparison of the counteracting effects between these methylamines on urea-induced denaturation of alpha-chymotrypsin (CT), we measured the hydrodynamic diameter (d(H)) and the thermodynamic properties (T(m), DeltaH, DeltaG(U), and DeltaC(p)) with dynamic light scattering (DLS) and differential scanning calorimeter (DSC), respectively. The present investigation compares the compatibility and counteracting hypothesis by determining the effects of methylamines and urea, as individual components and in combination at a concentration ratio of 1:2 (methylamine:urea) as well as various urea concentrations (0.5-5 M) in the presence of 1 M methylamine. The experimental results revealed that the naturally occurring osmolytes TMAO, betaine, and sarcosine strongly counteracted the urea actions on alpha-chymotrypsin. The results also indicated that TMAO counteracting the urea effects on CT was much stronger than betaine or sarcosine.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.