Abstract

The compatible solute N(ɛ)-acetyl-β-lysine (NeABL), thus far considered unique to methanogenic Archaea, has been found to accumulate in several strains of green sulfur bacteria (GSB) and Bacillus cereus CECT 148(T) under salt stress. A similar mixture of compatible solutes including trehalose, α-glutamate, β-glutamate and NeABL has been detected in salt-tolerant GSB strains of different phylogenetic branches. The ability of B. cereus to synthesize this compound was predicted from available genomic data, and nuclear magnetic resonance analyses of cultures grown in salt-containing media indicated that NeABL was present in the solute pools of osmotically challenged cells. The present results describe for the first time in the bacterial domain the use of this compound for osmoadaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.