Abstract

The Osmium (VIII) catalyzed oxidation of acetone and ethylmethyl ketone by chloramine-T, in highly alkaline solutions showed first order dependence to chloramine-T and osmium (VIII). The order of the reactions with respect to alkali and ketone were found to be fractional, being ~-0.82 and 0.3 respectively. No effects of ionic strength were evident. The mechanism has been proposed on the basis of the formation of a complex between N-chlorotoluene-p-sulfonamide and osmium (VIII) in the slow step, which in turn oxidizes the enol anion of the reducing substrate in the fast step. During the study of the mechanism of oxidations by chloramine-T, the kinetics of the oxidation of α-hydroxy acids 1 in presence of osmium (VIII) as catalyst, glycerol2 in neutral and alkaline media, p-cresol3 in an acidic medium, hexacyanoferrate (II)4 in a feebly acidic medium (pH 6-7) and aliphatic aldehydes 5 in alkaline media have been investigated. Despite the high redox potential6 of the chloramine-T/toluene sulfonamide system (1.138 V at pH 12), the oxidation of acetone does not take place in absence of catalyst and that of ethylmethyl ketone proceeds only in highly alkaline solutions7 (NaOH>0.01 M). In the present note the kinetics of the osmium (VIII) catalyzed oxidation of acetone and ethylmethyl ketone have been recorded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call