Abstract

Early Palaeoproterozoic (2.5-2.0 billion years ago) was a critical phase in Earth's history, characterized by multiple severe glaciations and a rise in atmospheric O(2) (the Great Oxidation Event). Although glaciations occurred at the time of O(2) increase, the relationship between climatic and atmospheric transitions remains poorly understood. Here we report high concentrations of the redox-sensitive element Os with high initial (187)Os/(188)Os values in a sandstone-siltstone interval that spans the transition from glacial diamictite to overlying carbonate in the Huronian Supergroup, Canada. Together with the results of Re, Mo and S analyses of the sediments, we suggest that immediately after the second Palaeoproterozoic glaciation, atmospheric O(2) levels became sufficiently high to deliver radiogenic continental Os to shallow-marine environments, indicating the synchronicity of an episode of increasing O(2) and deglaciation. This result supports the hypothesis that climatic recovery from the glaciations acted to accelerate the Great Oxidation Event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.