Abstract
Salinity is a major abiotic stress that harms rice growth and productivity. Low phosphate roots (LPRs) play a central role in Pi deficiency-mediated inhibition of primary root growth and have ferroxidase activity. However, the function of LPRs in salt stress response and tolerance in plants remains largely unknown. Here, we reported that the OsLPR5 was induced by NaCl stress and positively regulates the tolerance to salt stress in rice. Under NaCl stress, overexpression of OsLPR5 led to increased ferroxidase activity, more green leaves, higher levels of chlorophyll and lower MDA contents compared with the WT. In addition, OsLPR5 could promote the accumulation of cell osmotic adjustment substances and promote ROS-scavenging enzyme activities. Conversely, the mutant lpr5 had a lower ferroxidase activity and suffered severe damage under salt stress. Moreover, knock out of OsLPR5 caused excessive Na+ levels and Na+/K+ ratios. Taken together, our results exemplify a new molecular link between ferroxidase and salt stress tolerance in rice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.