Abstract

We present simulations of the one-dimensional Oslo rice pile model in which the critical height at each site is randomly reset after each toppling. We use the fact that the stationary state of this sand-pile model is hyperuniform to reach system of sizes >10^{7}. Most previous simulations were seriously flawed by important finite-size corrections. We find that all critical exponents have values consistent with simple rationals: ν=4/3 for the correlation length exponent, D=9/4 for the fractal dimension of avalanche clusters, and z=10/7 for the dynamical exponent. In addition, we relate the hyperuniformity exponent to the correlation length exponent ν. Finally, we discuss the relationship with the quenched Edwards-Wilkinson model, where we find in particular that the local roughness exponent is α_{loc}=1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.