Abstract

Statistical models derived from two inferences, Frequentist and Bayesian, are compared for OSL data analysis. Controlled laboratory experiments were designed to investigate: (1) dose recovery behaviour and (2) dose variability. (1) Dose recovery tests were performed on single grains of quartz close to saturation. We test whether the Central Dose Model (CDM, Galbraith, 1999), which is the most commonly used model, is capable of converging towards the given dose. Furthermore, a set of new Bayesian age models developed by Combès and Philippe (2017) is applied to determine the dose recovery ratio. The results suggest that the CDM underestimates the given dose if no D0 criterion is applied. (2) Bayesian models and frequentist models (CDM and Average Dose Model: ADM, Guérin et al., 2017) are used in dose variability experiments to compare the estimated average dose. To mimic natural beta dose heterogeneity to single grains of quartz, log-normal dose distributions with different dispersions were created artificially. The results indicate an underestimation of the average dose by at least 10% for CDM, lognormal-median and Cauchy for dispersion values greater than 40%. Conversely, we show that the ADM, the Bayesian lognormal-average and Gaussian models converge towards the average of the distribution and display almost no underestimation, for a significant gain in accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.