Abstract

The enzyme C-14 sterol reductase is involved in biosynthesis of brassinosteroids (BR) and sterols, as well as plant development. OsFK1, a member of the sterol biosynthesis pathway located in the endoplasmic reticulum (ER), encodes C-14 sterol reductase. However, there is little research on the function of C-14 sterol reductase in rice. Compared with the wild type, an osfk1 mutant showed dwarf phenotype and premature aging in the second leaf during the trefoil stage, and abnormal development of leaf veins during the tillering stage. The osfk1 mutant showed signs of aberrant PCD, as evidenced by TUNEL staining. This suggested that high ROS buildup caused DNA damage and ROS-mediated cell death in the mutant. The osfk1 mutant also showed decreased chlorophyll content and aberrant chloroplast structure. Sequencing of the osfk1 mutant allele revealed a non-synonymous G to A mutation in the final intron, leading to early termination. Here, we identified the OsFK1 allele, cloned it by Mutmap sequencing, and verified it by complementation. HPLC-MS/MS assays demonstrated that the osfk1 mutation caused lower phytosterol levels. These findings showed that the OsFK1 allele encoding C-14 sterol reductase is involved in phytosterol biosynthesis and mediates normal development of rice plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.