Abstract

Pickering emulsions are colloidal dispersions stabilized by particles that either migrate to, or are formed at, the oil-water interface during emulsification. Here, we fabricated and characterized Pickering water-in-oil emulsions where molten glycerol monostearate crystallized at the surface of micron-sized water droplets and formed protective solid shells. We tested this emulsion as a reservoir delivery platform for the sustained release of low molecular weight hydrophilic molecules including sodium chloride (NaCl) and sodium citrate as model compounds, and the therapeutic oseltamivir phosphate (OP), the delivery of which was the ultimate goal of this research. The objective was to achieve long-term (30-day) release of challenging to encapsulate actives and ultimately demonstrate the sustained release of OP for 20–30 days from an injectable formulation. OP was used because of its anticancer properties targeting mammalian neuraminidase 1 (Neu1) involved in multistage tumorigenesis. All actives including OP encapsulated in Pickering emulsions displayed a near linear release profile over 30 days. It was demonstrated that the release could be modulated by the addition of a second, competing surfactant sorbitan monooleate, Span 80, to the emulsion at levels above its critical micelle concentration. OP released from the emulsions significantly reduced cell viability in the human PANC-1 pancreatic cancer cell line for up to 30 days. The findings from this study indicate a simple, potentially injectable formulation and method that is easily upscaled resulting in a stable product with the potential to fully retain small hydrophilic molecules/drugs for sustained, near linear release over days, weeks, and potentially months.

Highlights

  • Emulsions consist of two immiscible fluids where one is dispersed as discrete droplets within the other

  • We tested this emulsion as a reservoir delivery platform for the sustained release of low molecular weight hydrophilic molecules including sodium chloride (NaCl) and sodium citrate as model compounds, and the therapeutic oseltamivir phosphate (OP), the delivery of which was the ultimate goal of this research

  • The primary objective of this research was the design of an injectable drug delivery vehicle for targeted and extended-term delivery of oseltamivir phosphate (OP) against pancreatic cancer

Read more

Summary

Introduction

Emulsions consist of two immiscible fluids where one is dispersed as discrete droplets within the other. Particle-based emulsion stabilization is increasingly being sought in place of more commonly used smallmolecule or polymeric surfactants, owing to the ability of particles to confer remarkable resistance against droplet coalescence in both oil-in-water (O/W) and water-inoil (W/O) emulsions. Given their entrapment within a deep energy well, interfacially-bound particles provide steric hindrance that may reduce emulsion sensitivity to temperature variations, pH and osmotic gradients. Such emulsions are denoted as Pickering emulsions, based on one of their first reports [1]. Pickering emulsions have been highly useful in topical drug delivery systems [4,5,6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call