Abstract

Endoplasmic reticulum-associated protein degradation (ERAD) plays an important role in endoplasmic reticulum (ER) quality control. To date, little is known about the retrotranslocation machinery in the plant ERAD pathway. We obtained a DERLIN-like protein (OsDER1) through a SWATH-based quantitative proteomic analysis of ER membrane proteins extracted from ER-stressed rice (Oryza sativa) seeds. OsDER1, a homolog of yeast and mammal DER1, is localized in the ER and accumulates significantly under ER stress. Overexpression or suppression of OsDER1 in rice leads to activation of the unfolded protein response and hypersensitivity to ER stress, and suppression results in floury, shrunken seeds. In addition, the expression levels of polyubiquitinated proteins increased markedly in OsDER1 overexpression or suppression transgenic rice. Coimmunoprecipitation experiments demonstrated that OsDER1 interacted with OsHRD1, OsHRD3, and OsCDC48, the essential components of the canonical ERAD pathway. Furthermore, OsDER1 associated with the signal peptide peptidase, a homolog of a component of the alternative ERAD pathway identified recently in yeast and mammals. Our data suggest that OsDER1 is linked to the ERAD pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.