Abstract

How do we keep an object in mind? Based on evidence from animal electrophysiology and human brain-imaging techniques, it is commonly held that short-term memory relies on sustained activity in a network distributed over sensory and prefrontal cortices. How does neural firing persist in such a distributed network in the absence of visual input? Hebb's influential but so far unproved proposal, developed more than 50 years ago, is that sustained activation in short-term memory networks is maintained by reverberating activity in neuronal loops. We hypothesized that synchronized oscillatory activity, proposed to provide a dynamic link between distributed areas, could not only coordinate activity in the network but also establish reentrant loops in the system to enable both sustained firing and temporal coincidence of inputs. We show in human intracranial recordings that limited regions of extrastriate visual areas, separated by several centimeters, become synchronized in an oscillatory mode during the rehearsal of an object in visual short-term memory. Synchrony occurs specifically in the beta range (15-25 Hz) and disappears in a control condition. These findings thus confirm experimentally the hypothesis of a functional role of synchronized oscillatory activity in the coordination of distributed neural activity in humans, and support Hebb's popular but unproved concept of short-term memory maintenance by reentrant activity within the activated network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call