Abstract
The low frequency oscillatory relaxation of zonal potential perturbations is studied numerically in the TJ-II stellarator (where it was experimentally detected recently for the first time in Alonso et al 2017 Phys. Rev. Lett. 118 185002). It is studied in full global gyrokinetic simulations of multi-species plasmas. The oscillation frequency obtained is compared with predictions based on single-species simulations using simplified analytical relations. It is shown that the frequency of this oscillation for a multi-species plasma can be accurately obtained from single-species calculations using extrapolation formulas. The damping of the oscillation and the influence of the different inter-species collisions is studied in detail. It is concluded that taking into account multiple kinetic ions and electrons with impurity concentrations realistic for TJ-II plasmas allows to account for the values of frequency and damping rate in zonal flows relaxations observed experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.