Abstract

We have numerically investigated a series array of electromagnetically coupled Josephson junctions considering the coupling delay. In the general case of a nonzero delay, we have derived equations for the slow and fast phases in the low-frequency approximation. We have studied the regimes of oscillations of a Josephson junction array for different positions of the bias point on the current–voltage characteristics (including its reverse branch). Similar analysis has been performed for systems of equations without coupling delay and for an arbitrary bias current. Several regimes of steady-state oscillations have been detected, i.e. synchronous oscillations, traveling wave regime, regime of partial switching-off of junctions, and chimera states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.