Abstract

Many biological ion channels controlled by biochemical reactions have autonomous and periodic gating functions, which play important roles in continuous mass transport and signal transmission in living systems. Inspired by these functional biological ion channel systems, here we report an artificial self-oscillating nanochannel system that can autonomously and periodically control its gating process under constant conditions. The system is constructed by integrating a chemical oscillator, consisting of BrO3-, Fe(CN)64-, H+, and SO32-, into a synthetic proton-sensitive nanochannel modified with C-quadruplex (C4) DNA motors. The chemical oscillator, containing H+-producing and H+-consuming reactions, can cyclically drive conformational changes of the C4-DNA motors on the channel wall between random coil and folded i-motif structures, thus leading to autonomous gating of the nanochannel between open and closed states. The autonomous gating processes are confirmed by periodic high-low ionic current oscillations of the channel monitored under constant reaction conditions. The utilization of a chemical oscillator integrated with DNA molecules represents a method to directly convert chemical energy of oscillating reactions to kinetic energy of conformational changes of the artificial nanochannels and even to achieve diverse autonomous gating functions in artificial nanofluidic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.