Abstract
Flow in microchannels differs substantially from the flow in the macroscopic scale. Despite numerous works on two-phase flow and oscillatory single-phase flow in microchannels, oscillatory two-phase flow has not been thoroughly investigated. One of the situations where this type of flow occurs is in the ultrasonic drying device recently pioneered by Oak Ridge National Laboratory. An ultrasonic oscillatory piezoelectric transducer with microchannels is designed to dry the fabric by atomization and draining the water through the microchannel outlet. In this work, computational fluid dynamics is utilized to investigate the air-water two-phase flow driven by the ultrasonic vibrating microchannel. Our results indicate the importance of microchannel geometry and vibration conditions on drying efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.