Abstract

In contrast to mouse, rat islet beta-cell membrane potential is reported not to oscillate in response to elevated glucose despite demonstrated oscillations in calcium and insulin secretion. We aim to clarify the electrical activity of rat islet beta-cells and characterize and compare the electrical activity of both alpha- and beta-cells in rat and mouse islets. We recorded electrical activity from alpha- and beta-cells within intact islets from both mouse and rat using the perforated whole-cell patch clamp technique. Fifty-six percent of both mouse and rat beta-cells exhibited an oscillatory response to 11.1 mm glucose. Responses to both 11.1 mm and 2.8 mm glucose were identical in the two species. Rat beta-cells exhibited incremental depolarization in a glucose concentration-dependent manner. We also demonstrated electrical activity in human islets recorded under the same conditions. In both mouse and rat alpha-cells 11 mm glucose caused hyperpolarization of the membrane potential, whereas 2.8 mm glucose produced action potential firing. No species differences were observed in the response of alpha-cells to glucose. This paper is the first to demonstrate and characterize oscillatory membrane potential fluctuations in the presence of elevated glucose in rat islet beta-cells in comparison with mouse. The findings promote the use of rat islets in future electrophysiological studies, enabling consistency between electrophysiological and insulin secretion studies. An inverse response of alpha-cell membrane potential to glucose furthers our understanding of the mechanisms underlying glucose sensitive glucagon secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.