Abstract

A quantum-statistical theory of magnetophonon resonance oscillations in two-dimensional systems has been developed, starting from the resolvent representation of Kubo's formula and its proper connected diagram expansion. Non-polar and polar optical-phonon scattering has been considered and the results show, as anticipated based on the physical considerations and experimental observations, conductivity oscillations as a function of magnetic field with the magnetophonon resonances occurring at the phonon frequencies {ie1539-1} {ie1539-2}=cyclotron frequency). Divergences occurring in the magnetoconductivity near the magnetophonon resonances are removed by using the full resolvent operator in the tetradic self-energy operator of an electron. These additional terms provide necessary damping of the magnetophonon resonance oscillations. The present results are also shown to be qualitatively similar to those obtained by others using quantum Boltzmann's equation approach to quantum transport theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call