Abstract

Discrete-time quantum walks are well-known for exhibiting localization, a quantum phenomenon where the walker remains at its initial location with high probability. In companion with a joint Letter, we introduce oscillatory localization, where the walker alternates between two states. The walk is given by the flip-flop shift, which is easily defined on non-lattice graphs, and the Grover coin. Extremely simple examples of the localization exist, such as a walker jumping back and forth between two vertices of the complete graph. We show that only two kinds of states, called flip states and uniform states, exhibit exact oscillatory localization. So the projection of an arbitrary state onto these gives a lower bound on the extent of oscillatory localization. Thus we completely characterize the states that oscillate under the quantum walk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.