Abstract

The response to dorsal root stimulation, at one to two times threshold, was investigated in the isolated cervical enlargement of the turtle spinal cord. At frequencies near 10 Hz the synaptic response in motoneurons and the cord dorsum potential, after an initial lag time, oscillated in amplitude with a period of more than 1 s. The mono- and polysynaptyic postsynaptic response in motoneurons, the pre- and postsynaptic component of the cord dorsum potential and the dorsal root potential oscillated in synchrony. These oscillations were only observed with stimulus frequencies in the range 9–11 Hz. The oscillating response could only be evoked from stimulus sites to which dorsal root potentials were conducted from the spinal cord (2–3 mm). At more distant stimulus sites cyclic variations in amplitude of the cord dorsum potential and the synaptic response in motoneurons were not observed. During an oscillating spinal response to a stimulus train in one dorsal root filament, the response evoked by a stimulus in another short filament (2–3 mm) from the same root varied in amplitude with the induced oscillation. The spinal response to a stimulus in a longer filament (i.e. more than 3 mm) did not oscillate. It is argued that the oscillating responses described rely on interactions between distributed elements rather than on unit oscillators. We also show that primary afferent transmission is unaffected by the substantial variations in dorsal root potentials during oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.