Abstract
Oscillatory flow around a cluster of four circular cylinders in a diamond arrangement is investigated using two-dimensional direct numerical simulation over Keulegan–Carpenter numbers (KC) ranging from 4 to 12 and Reynolds numbers (Re) from 40 to 230 at four gap-to-diameter ratios (G) of 0.5, 1, 2 and 4. Three types of flows, namely synchronous, quasi-periodic and desynchronized flows (along with 14 flow regimes) are mapped out in the (G,KC,Re)-parameter space. The observed flow characteristics around four cylinders in a diamond arrangement show a few unique features that are absent in the flow around four cylinders in a square arrangement reported by Tonget al. (J. Fluid Mech., vol. 769, 2015, pp. 298–336). These include (i) the dominance of flow around the cluster-scale structure at$G=0.5$and 1, (ii) a substantial reduction of regime D flows in the regime maps, (iii) new quasi-periodic (phase trapping)$\text{D}^{\prime }$(at$G=0.5$and 1) and period-doubling$\text{A}^{\prime }$flows (at$G=1$) and most noteworthily (iv) abnormal behaviours at ($G\leqslant 2$) (referred to as holes hereafter) such as the appearance of spatio-temporal synchronized flows in an area surrounded by a single type of synchronized flow in the regime map ($G=0.5$). The mode competition between the cluster-scale and cylinder-scale flows is identified as the key flow mechanism responsible for those unique flow features, with the support of evidence derived from quantitative analysis. Phase dynamics is introduced for the first time in bluff-body flows, to the best knowledge of the authors, to quantitatively interpret the flow response (e.g. quasi-periodic flow features) around the cluster. It is instrumental in revealing the nature of regime$\text{D}^{\prime }$flows where the cluster-scale flow features are largely synchronized with the forcing of incoming oscillatory flow (phase trapping) but are modulated by localized flow features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.