Abstract
In this paper, we study the forced oscillatory theory for higher order fractional differential equations with damping term via $\Psi$-Hilfer fractional derivative. We get sufficient conditions which ensure the oscillation of all solutions and give an illustrative example for our results. The $\Psi$-Hilfer fractional derivative according to the choice of the $\Psi$ function is a generalization of the different fractional derivatives defined earlier. The results obtained in this paper are a generalization of the known results in the literature, and present new results for some fractional derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fundamental Journal of Mathematics and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.