Abstract
A neurodynamical approach to scene segmentation of hyperspectral imagery is investigated based on oscillatory correlation theory. A network of relaxation oscillators, which is based on the Locally Excitatory Globally Inhibitory Oscillator Network (LEGION), is extended to process multiband data and it is implemented to perform unsupervised scene segmentation using both spatial and spectral information. The nonlinear dynamical network is capable of achieving segmentation of objects in a scene by the synchronization of oscillators that receive local excitatory inputs from a collection of local neighbors and desynchronization between oscillators corresponding to different objects. The original LEGION model was designed for single-band imagery. The proposed multiband version of LEGION is implemented such that the connections in the oscillator network receive the spectral pixel vectors in the hyperspectral data as excitatory inputs. Euclidean distances between spectra in local neighborhoods are used as the measure of closeness in the network. The ability of the proposed approach to perform natural and urban scene segmentation for geospatial analysis is assessed. Our approach is tested on two hyperspectral datasets with notably different sensor properties and scene content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.