Abstract
Suppose a two-dimensional dynamical system has a stable attractor that is surrounded by an unstable limit cycle. If the system is additively perturbed by white noise, the rate of escape through the limit cycle will fall off exponentially as the noise strength tends to zero. By analyzing the associated Fokker--Planck equation we show that in general the weak-noise escape rate is non-Arrhenius: it includes a factor that is periodic in the logarithm of the noise strength. The presence of this slowly oscillating factor is due to the nonequilibrium potential of the system being nondifferentiable at the limit cycle. We point out the implications for the weak-noise limit of stochastic resonance models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.