Abstract

The magnetic outcomes are frequently implemented for assessing fluid specifications around stretching magnetized surfaces and energy producing technology of thermodynamics. Magnetohydrodynamic reactors and magneto-hydrodynamic generators are two primary methods for producing magnetic flux through ionized fluids along a warmed and magnetized stretched surface. The desired outcomes of the current work are to investigate magnetic flux and heat transmission in the presence of convective boundary conditions using an electrically-conducting fluid over a stretchable cylinder. Most of the parameters are considered in the discussion with intensity and variance due to time dependent methodology. The suggested fluctuating dynamic computational framework is formulated for associated forms of coupled model under boundary variables. The appropriate non-dimensional variables are used to transform the complicated mathematical expression into a non-dimensional representation. To make the non-dimensional representation easier to work for efficient statistical calculations, it is reduced further. Later, for a variety of variables, significant computations are performed via the implicit finite difference methodology. The main finding of current communication is to explore the prominent slip effect in temperatures for every Biot number around all positions. From a physical standpoint, the phenomenon was predictable since surface heat flux is employed as sporting source to increase heat transmission in electric-conducting fluids. For every possible angle, the field of magnetism increases with minimal intensity of surface heat flux. Since, magnetizing functions referred to as an insulating layer that diminishes high temperatures across surfaces and fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.