Abstract

The dynamics of a low-viscosity fluid inside a rapidly rotating horizontal cylinder were experimentally studied. In the rotating frame, the force of gravity induces azimuthal fluid oscillations at a frequency equal to the velocity of the cylinder’s rotation. This flow is responsible for a series of phenomena, such as the onset of centrifugal instability in the Stokes layer and the growth of the relief at the interface between the fluid and the granular medium inside the rotating cylinder. The phase inhomogeneity of the oscillatory fluid flow in the viscous boundary layers near the rigid wall and the free surface generates the azimuthal steady streaming. We studied the relative contribution of the viscous boundary layers in the generation of the steady streaming. It is revealed that the velocity of the steady streaming can be calculated using the velocity of the oscillatory fluid motion.

Highlights

  • The rotational and oscillatory flows of a fluid with a free surface in a container are of fundamental interest and are interesting for certain applications

  • We experimentally examined the dynamics of an annular layer of a low-viscosity liquid inside a rapidly rotating horizontal cylinder

  • Following Ivanova et al [13], we introduce the dimensionless parameter Γ = g/Ω2a (g is the acceleration of gravity and a is the radius of the cylindrical free surface), which is the ratio of the gravitational force to the centrifugal force

Read more

Summary

Introduction

The rotational and oscillatory flows of a fluid with a free surface in a container are of fundamental interest and are interesting for certain applications. When the horizontal cylinder is stationary, the liquid is at rest in a pool at the bottom of the cylinder. When the cylinder rotates with a low to moderate angular velocity, its rising side drags out a thin film of liquid from the pool. This flow regime has been studied in detail, and an entire series of instabilities has been discovered including hygrocysts, solitary waves, and shark-teeth and fish-like patterns [2]

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call