Abstract
AbstractThe Serre–Green–Naghdi equations of water wave theory have been widely employed to study undular bores. In this study, we introduce a modified Serre–Green–Naghdi system incorporating the effect of an artificial term that results in dispersive and dissipative dynamics. We show that the modified system effectively approximates the classical Serre–Green–Naghdi equations over sufficiently extended time intervals and admits dispersive–diffusive shock waves as traveling wave solutions. The traveling waves converge to the entropic shock wave solution of the shallow water equations when the dispersion and diffusion approach zero in a moderate dispersion regime. These findings contribute to an understanding of the formation of dispersive shock waves in the classical Serre–Green–Naghdi equations and the effects of diffusion in the generation and propagation of undular bores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.